Introduction

The following protocol has been adopted by the NCAA, is effective August 1, 2024, and must be followed when baseball bats are submitted for BBCOR certification. Updates to the protocol from the previous protocol version are underlined. All bats for NCAA competition must meet the BBCOR standard and the requirements of Rule 1-12 in the NCAA Baseball Rules Book. Those bats will appear on the NCAA Approved Bat List. This protocol has been adopted as an addendum to the NCAA baseball rules and does not supersede the rules.

Revisions

The NCAA will revise the protocol as needed and reserves the right to change the test equipment, test location and the testing personnel. The NCAA Baseball Research Panel and the NCAA Baseball Rules Committee will review this protocol annually. The NCAA will announce in a timely manner any future changes to the rules or protocol as well as any amendments to the protocol.

Manufacturer’s Responsibilities

Bats must be designed so that their performance remains BBCOR compliant (as described below) throughout the life of the bat. Thus, approved bat designs must account for the effects of wear and manufacturing variation. The design of production bats must be identical to the bat submitted for certification. Production bats must be representative of the bat submitted for certification.

The certification center will provide any updates to their testing best practices to the NCAA twice per year. Test methodology is governed by this protocol and not the best practice document. Deviations from the best practice document by the certification center, therefore, shall not be grounds for invalidating or appealing test results.

Wood Bats

Solid, one-piece wood bats (as defined by NCAA Baseball Rule 1-12-a) are automatically approved. To use the BBCOR certification mark, the 33-inch length of each model must be submitted with a certification request. The bat is not required to pass the “Bat Testing Procedure” or meet the weight and moment of inertia requirements in “Test Bat Preparation” described below.

Solid barrel, multi-piece wood bats (as determined by the NCAA) must comply with the BBCOR protocol except for the “Bat Testing Procedure” described below. Two 33-inch samples of each model must be submitted with a certification request. Multi-piece wood bats or wood-composite construction will be examined to verify a solid barrel construction. Three 33-inch samples may be requested for wood-composite designs to verify solid barrel construction.
Non-Wood Bats

All non-wood bats must pass the complete BBCOR protocol for approval. To use the BBCOR certification mark, two samples of each length of each design must be submitted with a certification request. The certification center will select and subject one sample to the BBCOR protocol. The second sample, identified as a sister bat, is stored if future testing is needed.

Performance Test Request

All certified bats will be listed on the NCAA’s BBCOR approved bat list unless the bat barrel graphics do not meet the NCAA playing rule. Bats that do not meet the playing rules, but request certification will remain in the Washington State University certified bat list. The certification is valid from the date of the certification test for four or six years according to:

- Four years if $0.500 \geq BBCOR > 0.480$
- Six years if $0.480 \geq BBCOR$.

When the bat certification expires, a new certification test is required using samples from most current production if the manufacturer plans to continue producing a bat design. Bats produced after the new certification test must use a new model number at least one character different than the original certification model number. Bats produced from a design certification that is expired will be found noncompliant.

The following must be provided for each design and length combination submitted for certification testing:

- bat company (entity whose name appears on the bat)
- serial number
- barrel classification (metal and/or composite and/or wood)
- multiwall
- materials in the bat (e.g., alloys, composites, any filling or deadening materials)
- barrel insert location and insert material (i.e., metal, composite, polymer)
- two bats (without grips, final graphics on the bats are not required)

Test requests are to be made at http://www.mme.wsu-ssl.org/Account/Login.aspx.

Indemnification

The registering party agrees to defend, indemnify, and hold harmless the NCAA, other governing bodies that use BBCOR and the certification laboratory (“Indemnification Parties”) from claims or legal actions arising from the use of the registering party’s product, or bat testing or certification

1. https://forms.ncaa.org/approvedBats
of the registering party’s products only. The registering party’s obligations hereunder are strictly related to the registering party’s products and do not include allegations related to the adoption or appropriateness of the test standards, test protocols, the test standards nor to the negligence or willful misconduct of the Indemnified Parties.

Test Results

Upon certification, the test results, test bats and the untested sister bats become confidential property of the NCAA. The NCAA reserves the right to use and/or publish blinded results for research or public dissemination. Manufacturers may request all raw test data, upon request via email to the certification center and the NCAA.

Manufacturers may, at their discretion, disclose the results, including test data, of bats that they have manufactured. If a manufacturer discloses such information, the NCAA may disclose information from the same test.

Certification

The following must also be provided for each sample certification testing design and length combination:

- model name.
- model number.
- image of final graphics (cannot change for a given model number)
- Target date of first production

Certification requests are to be made at http://www.mme.wsu-ssl.org/Account/Login.aspx.

Certification Mark

Approved bats must display an official NCAA certification mark signifying compliance with the NCAA’s bat performance standard to be allowed in regular-season and post-season competition.

All production bats after June 1, 2020, must clearly display the certification mark and the model number within the same region that is 16 to 24 inches from the knob end of the bat using a silk-screen or other approved permanent method. The certification mark and model number must be clearly displayed in a color that contrasts the color of the bat barrel in that location. The certification mark and the model number do not have to be located directly next to one another. The manufacturer may use the certification mark in descriptive materials (such as catalogs) to identify bats that comply with this testing standard but may not make other use of the mark. Use of the certification mark to advertise or promote the sale or distribution of bats is expressly prohibited. Wood bats may display the model number in the 16 to 24 inch area or the knob end of the bat.
Testing Expenses
The test sponsor is responsible for all testing expenses and should work directly with the certification laboratory regarding the testing expenses.

Compliance Testing
The NCAA will conduct discretionary periodic testing of bats at its expense to ensure compliance with the standard. The performance standard for BBCOR compliance testing is \(0.500 \pm \text{test variance}\). The NCAA will account for test variance to ensure bat model(s) maintain compliance with the performance standard. Bats may be obtained from dealer stock, retail and/or pulled from play. Teams that provide bats for compliance testing will be reimbursed by the NCAA for the costs of those bats. **Teams will not be reimbursed for bats removed from competition for failure of field barrel compression testing.** If any nonconforming bats are identified, the NCAA will notify the manufacturer in writing of its findings.

Bat models identified as potentially non-compliant will be evaluated by the NCAA by conducting a retest of the original certification bat (metal designs only) or the archived sister bat without ABI (composite designs only) prior to testing up to five compliance test bats. A bat model will be declared non-compliant if at least three of five compliance tests result in failure. Upon identification of a nonconforming bat model, all bat lengths of that design may be tested for compliance. Bat manufacturers will be notified of the failure of specific bat models and lengths and that subsequent testing of the other lengths of a given design may be conducted. The **NCAA may utilize testing methods other than the ABI process, such as durability testing, at the certification center for compliance testing of composite bat models.**

The manufacturer will be given the opportunity to review the compliance report and will be allowed an appeal in writing of the findings to the NCAA within 14 days upon receipt of the notice. This right to appeal will include the right to have the certification center retest the compliance bats in question, the original certification bat, and the sister bat, at the manufacturer’s expense. **Appeal testing does not have to occur within 14 days of notification but shall occur at the earliest convenience for the certification center and the manufacturer, without undue delay.** If compliance testing occurs with a composite bat, the request to retest the compliance bats will be satisfied by the certification center purchasing new bats from that design from the market at the manufacturer’s expense. The NCAA Baseball Rules Committee reserves the right to conduct additional testing on bats within the compliance testing process for additional information.

Once retesting, and any additional testing requested by the NCAA is complete, the Baseball Rules Committee will act on the appeal and notify the manufacturer of its decision within seven days. The NCAA retains the right to announce publicly all models of a bat design that have failed a compliance test. Noncompliant bat models will be removed from the approved bat list.
Testing Protocol

Test Apparatus
A bat test apparatus, consisting of an air cannon, ball speed gate, bat pivot with speed measurement and environmental control as described in ASTM F2219.

A load frame and anvils capable of measuring barrel compression according to ASTM F2844.

Standard Bat Calibration
The purpose of the Standard Bat is to ensure test uniformity over time and between laboratories. Standard Bats shall have a length of 34 ± 0.07 in, inertia of 11,250 ± 100 oz in² (ASTM F2398), wall thickness at 6 inches from the endcap of 0.165 ± 0.003 in, and a BBCOR of 0.495 ± 0.005. Order requests for a Standard Bat may be placed at info@wsu-ssl.org. To reduce variation, Standard Bats are impacted at the marked circumferential location, and not rotated between impacts.

The BBCOR of a Standard Bat is established from 48 baseballs. To calibrate a Standard Bat, a new and existing Standard Bat are each impacted at 6 inches from the endcap with 24 different baseballs. The groups of 24 balls are then exchanged between the new and existing Standards Bats for an additional 24 impacts on each bat. The calibrated BBCOR of the new Standard Bat, \(e_n \), is found from

\[
e_n = e_e - \bar{e}_e + \bar{e}_n
\]

where \(e_e \) is the original calibrated BBCOR of the existing Standard Bat, and \(\bar{e}_n \) and \(\bar{e}_e \) are the average BBCOR from the 48 impacts with the new and existing Standard Bats, respectively.

\(C_\text{ball} \) Bat Calibration
\(C_\text{ball} \) Bats shall have the same design as the Standard bat and are used for test ball preparation. To reduce variation, \(C_\text{ball} \) Bats are impacted at the marked circumferential location, and not rotated between impacts.

The BBCOR of a \(C_\text{ball} \) Bat is established from 48 baseballs. To calibrate a \(C_\text{ball} \) Bat, the \(C_\text{ball} \) bat and a Standard Bat are impacted at 6 inches from the endcap with 24 different baseballs. The groups of 24 balls are then exchanged between the \(C_\text{ball} \) and Standards Bats for an additional 24 impacts on each bat. The calibrated BBCOR of the \(C_\text{ball} \) Bat, \(e_c \), is found from

\[
e_c = e_n - \bar{e}_n + \bar{e}_c
\]

where \(e_n \) is the calibrated BBCOR of the Standard Bat, and \(\bar{e}_n \) and \(\bar{e}_c \) are the average BBCOR from the 48 impacts with the Standard and \(C_\text{ball} \) Bats, respectively. \(C_\text{ball} \) bats are to be recalibrated annually.
Performance Calculations

Calculate the uncorrected bat-ball coefficient of restitution, e, using

$$e = \frac{v_R}{v_I} (1 + r) + r$$

where r is

$$r = m \left[\frac{1}{W} + \frac{(L - BP - z)^2}{I - W(BP - 6)^2} \right]$$

and where, m is the weight of the ball; v_I and v_R are the ball inbound and rebound speeds, respectively; W is the weight of the bat, I is the moment of inertia of the bat, and z is the impact location relative to the endcap of the bat.

Calculate the corrected bat-ball coefficient of restitution, $BBCOR$, using

$$BBCOR = e + C_{\text{ball}} + C_{\text{lot}}$$

where C_{ball} and C_{lot} are defined in “Test Ball Preparation.”

Test Ball Preparation

Test balls shall have lot correction to account for changes in ball performance with use. A ball lot is defined by its date code3. A lot will consist of 50 to 100 dozen balls with the same date code. For each lot, at least 24 balls will be randomly selected and impacted 20 times at 136 ± 1 mph against the C_{ball} Bat. Results from balls that yield less than 15 valid hits will be discarded. A Clot calculation must consist of at least 18 balls. The average performance of the first four impacts, e_{1-4}, will be compared to the average performance of impacts 5-20, e_{5-20}, to obtain a lot correction factor, C_{lot}, as

$$C_{\text{lot}} = e_{1-4} - e_{5-20}$$

and shall be recorded.

3 The date code is typically found to the right of the “NCAA” logo near the seam. It is a 5-character code with numbers and letters.
Test balls shall be impacted at 6 in. from the endcap against a C_{ball} Bat, as described in ASTM F2219. The C_{ball} Bat shall be impacted at the marked circumferential location, and not rotated between impacts.

Test balls shall be Rawlings Model FSR1NCAA baseballs. Each ball shall be impacted once on each of the four ears at a speed of 136 ± 1 mph. Test balls with only one valid impact (out of four) shall not be used. Equation 2 shall be used to obtain e for each valid impact, which shall be averaged to obtain e_{avg}. Mark the ball surface to track the number of impacts.

The test date and correction factor, C_{ball}, defined by

$$C_{ball} = e_c - e_{avg}$$

shall be recorded for each test ball.

Test Bat Preparation

1. Record model name and model number.
2. Verify a passing maximum barrel diameter by passing the bat through a ring that is 1 in. long and of inside diameter 2.655 ± 0.003 in.
3. Measure the bat length, L (in), weight, W (oz), and maximum barrel diameter (in).
4. For length classification, round the bat length, L, to nearest $\frac{1}{2}$ in. to obtain L_c.
5. Verify that $W - L_c > -3.0$.
6. Measure the moment of inertia, I (oz in2), and balance point, BP (in), according to ASTM F2398.
7. Verify that $I > 0.0278 L_c^{3.615}$.
8. If the bat barrel contains a composite material or shows increased performance with use (as determined by the NCAA), it is deemed a “composite bat,” and the initial barrel compression is measured according to ASTM F2844. If the bat has a ring (or similar stiffening device) at the 6-inch location, changes in barrel compression may be observed at another barrel location.

Bat Testing Procedure

1. Mount the bat into the grip as described in F2219. The grip may include a compliant material between the clamps and the bat to allow for the rotation of the bat in the grip between hits.
2. Select a test ball. Test balls must have less than 20 impacts (5 per ear), at least a 4-hour rest between impacts and weigh 5.13 ± 0.07 oz. Mark the ball impact surface to track the number of ball impacts.
3. Select the impact location, z, relative to the distal end of the bat. Set the ball cannon to fire the ball at a target speed, V_T, of
\[V_T = 66 \left(\frac{L-6-z}{L-12} \right) + 70 \] \hspace{1cm} (6)

4. Accept only impacts where \(|V_T - V_i| \leq 1 \text{ mph} \) and which meet the criteria described in ASTM F2219.

5. Rotate non-wood bats a minimum of \(45^\circ\) and less than \(180^\circ\) between impacts unless the bat has a designated impact orientation.

6. The \(\text{BBCOR} \) at each location is the average of six valid impacts at that location.

7. Identify the maximum performance location by moving the impact location in \(\frac{1}{2}\) in. increments. Bats with a ring (or similar stiffening device) in the barrel must be scanned on both sides of the ring. The minimum \(\text{BBCOR} \) on either side of the peak must be at least 0.003 less than the peak \(\text{BBCOR} \).

Pass Criteria

1. The peak \(\text{BBCOR} \) must be less than or equal to 0.500.
2. The bat must not have damage immediately after the first performance test.
3. The bat inertia must be within 100 oz in\(^2\) of that measured in Test Bat Preparation. (interior damage may cause bat inertia to change)
4. The bat must pass the ring test, as described in step 2 of Test Bat Preparation.
5. Composite bats or other designs that show increased performance with use must also undergo the Accelerated Break-In Test Procedure.

Accelerated Break-In Test Procedure

1. Measure the barrel compression according to ASTM F2844. If the bat has a ring (or other similar stiffening device) at the 6-inch location, changes in barrel compression may be observed at another barrel location.
2. If the reduction in barrel compression from the performance test is more than 15\% go to step 4
3. Roll the bat following the Barrel Rolling Procedure (below).
4. Measure the \(\text{BBCOR} \) according to the Bat Test Procedure above.
 a. Stop if the bat is damaged so that the \(\text{BBCOR} \) test cannot be completed.
 i. The bat fails if the partial \(\text{BBCOR} \) at any location with two or more valid impacts is greater than 0.500.
 ii. The bat passes if the partial \(\text{BBCOR} \) exceeds 0.500 if those locations involve only one valid impact.
 b. Stop if the \(\text{BBCOR} \) decreases by more than 0.018 from its maximum value (bat passes)
 c. Stop if the \(\text{BBCOR} \) exceeds 0.500 (bat fails).
5. Go to step 1.
Cosmetic Changes

Manufacturers may request certifications for a cosmetic change of a previously certified bat design. Cosmetic changes are approved at the discretion of the NCAA for bats that change only in appearance. Any change in material(s) or physical design is subject to additional testing at the manufacturer’s expense. Cosmetic changes can be used to add a new model number, model name, or distributor name. Cosmetic change forms can be found at http://www.mme.wsu-ssl.org/Account/Login.aspx.

Custom Graphic Bats

To use custom graphics on a bat model, manufacturers must receive approval from the NCAA prior to graphic application. Manufacturers must define the customization for each bat model, identifying areas of the bat that will be available for customization. The manufacturer must provide a graphic that includes customization details to be included on the certification list and the NCAA Approved Bat List. When custom graphics options are added to a previously certified model, a cosmetic certification must be requested for the custom graphics and this certification must have a new model number at least one character different than the original certification model number. The bat model number and BBCOR certification mark must contrast in color to the location of its placement on the bat. Manufacturers should contact the NCAA regarding questions about the customized bat process. Bats approved for customized graphics do not require cosmetic change requests for each custom graphic.

Additional Testing

The NCAA and its certification laboratory reserve the right to conduct additional testing on any bat submitted for testing at the expense of the NCAA or the certification laboratory.

Barrel Rolling

Apparatus
- Two nylon wheels – 1.5 to 3.0 in. in diameter
- Fixture to press wheels into barrel in up to 0.012-in. increments.
- Device to roll the barrel.

Procedure:
1. Place the barrel of the bat in the fixture with the 0º orientation (as identified in F2844) facing up.
2. Bring roller in contact with the barrel. Displace the rollers approximately 0.075 in. for the initial rolling. For subsequent rolling, increase the rolling displacement by up to 0.012 in increments. Note: when approaching the desired reduction in barrel compression, it may not be necessary to increase the rolling depth.
3. Roll the barrel to within 2.0 to 2.5 in. of the endcap and past the taper (no contact between rollers and bat) as shown in Fig. 1. Roll the bat approximately 10 times in each direction. Popping and cracking sounds during this process are normal.

4. Unload the bat.

5. Repeat steps 2-4 at 45º, 90º, and 135º from the initial location.

6. Measure the BC_A.

7. Continue steps 1-6 until BC_A from rolling decreases by 5%.

Fig. 1 Diagram of rolling describing the rolling process.